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COMBUSTION HYDRODYNAMICS AND CHEMISTRY

I. GENERAL DISCUSSION

The computational study of the H,-O, reactive system has been compieted
and a copy of the NRL Memorandum Report on this work, #4466, is included in
this report as Appendix A. The objectives of this work were: 1) to assemble a
detailed, homogeneous, gas-phase reaction mechanism from the best available
literature data, 2) to test this mechanism for accuracy in its description of the
reactive H2'02 system, and 3) to suggest regions of reactive flow within which

this mechanism is applicable.

In order to evaluate the chemistry of the mechanism, comparisons were
made between experimental measurements that appeared to be primarily
chemistry-dependent and calculations involving the set of time-dependent
ordinary differential equations determined by the assembled HZ'OZ reaction
mechanism. The parameters used in these comparisons were: 1) reaction
induction time (or ignition delay time), 2) 2nd explosion limit calculations, 3)
rate of reaction in the slow reactive zone above the 2nd explosion limit, &)
temporal behavior of reaction species, 5) thermochemical heat release, and 6)
global (overall) chemical kinetic behavior. The concensus agreement between
experimental measurements and calculations of these parameters has substan-
tiated the validity of the assembled model in its description of the reactive
H2-O2 mechanism.

With regard to comparisons between computed and measured 1-12-02 flame

velocities, a literature search for recently measured flame velocities in these
systems has been completed. Although the detailed calculations and comparisons
have yet to be made, preliminary calculations using the assembled H2-O2
reaction mechanism and the flame code have shown good agreement in deter-

mining flammability limits.




Extension of the H,-O, reaction mechanism to include nitrogen-related
reactions has begun with a literature search. This work has revealed a complex
of elementary reactions that considerably complicates the H2'02 mechanism.
An evaluation to determine the most important of these reactions in the regions

¢ of concern is in progress.

Initialization of a collaborative effort between NRL's Laboratory for
Computational Physics and Chemical Diagnostics Branch in the area of detona-
tion measurements and modeling has begun with an evaluation of a three-
parameter, global ignition model for H,-O, detonation. Extensive calculations
have been made to appropriately assign values to the t*, A* and KT* parameters

in the expression

t= t*(PO/P) exp (A*/T-T*).

In this equation, t is the ignition delay time, Po is the reference pressure (usually w
1.0 atm), P is the initial pressure of the reaction mixture and T is the initial

temperature of the reaction mixture. Comparisons between induction times

calculated using the three-parameter expression and the full reaction mechanism

for pressures that vary from 0.05 to 200 atm and temperatures that range from

900 to 2000 °K have shown agreement in same P, T ranges. Subsequently it was

determined that when t is required, a table look-up is the best way to find it.

Two programs were written to convert the JANAF and Gordon-McBride
thermodynamic data into polynominal coefficients suitable for use in the
combustion modeling codes. These programs were named CONVRT and
POLYFIT and are currently stored on disk, tape and cards on the NRL ASC.
Each program was internally documented with sufficient comments to provide a
new user with enough information to enable easy start-up. Listings of these

programs are included in Appendix B.
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Program CONVRT transforms Gordon-McBride data into JANAF style data
that is suitable for input into the POLYFIT program. The output of both
programs consists of a listing of data and a deck of cards that uses a format

suitable for input into the next program in the sequence. Basically, CONVRT
evaluates the Gordon-McBride polynomials and converts the resulting data to
JANAF-style data. POLYFIT then uses the Scientific Program Library routine
LSQPOL to fit a polynomial to the JANAF-style data and calculates the
coefficients in units that are compatible with the combustion modeling codes.

The Gordon-McBride and JANAF data were found to be consistent to
within the error of the polynomial approximations used. Both use the same
reference temperature, 298.15K. It was discovered that the confusion that
existed was due to the use of two different reference temperatures in the
combustion codes. One reference temperature was used for the chemistry
routines and another was used for the hydrodynamic routines. This disparity has
been corrected.
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ABSTRACT

A set of elementary reactions and their corresponding rate coefficients has been assembied to
describe the homogeneous H.—O. reaction system over the temperature range 300-3000° K. The reac-
tion mechanism was drawn together assuming that H.—O, reactive mixtures could be adequately
described in terms of self-consistent, thermal distributions of electronicallv neutral, ground-state reac-
tants, intermediates and products. The resulting time-dependent ordinary differential equations describ-
ing the system were integrated assuming various initial pressures, temperatures and initial concentra-
tions of reactants and diluents. The computed resuits have been compared with experimentally
observed induction times, second explosion limits, the rate of reaction above the second explosion limit
and the temporal behavior of reaction species. The good agreement beiween the computational and
experimental resuits attests to the accuracy of the assembied mechanism in its description of the homo-
geneous reaction system and supports the validity of the set of associated rate coefficients for the ele-

mentary reactions of the mechanism over a broad range of reaction conditions.




A COMPUTATIONAL STUDY OF THE CHEMICAL KINETICS
OF HYDROGEN COMBUSTION

1. Introduction

A major difficulty in the study of reactive flows is the investigation of the influence of various
contributing processes in a system’s behavior. Because of this. it is often desirable 10 examine the
component processes separately before attempting to understand their interaction. In combustion sys-
tems. for example, it is important to investigate the chemical and gasdynamic processes individually
before considering the fully-coupled. nonlinear system. However. the strong coupling between these

processes sometimes poses an added problem to their separate and independent study.

In addition 1o these problems. there are other difficulties that are associated more explicitly with
the study of the individual processes. One important probiem that arises in the study of the chemistry
of combustion systems is the problem of accurately determining the reaction mechanism tha: describes
the system over the range of temperatures, pressures and stoichiometries encountered during combus-
tion. Such a reaction mechanism is usually composed of a set of elementary or primary reactions that
involve a number of intermediate species that are produced by initial reactants in their conversion to
products. However, even in the simplest chemical kinetic schemes. it is often difficult or nearly impos-
sible to determine all of the elementary reactions, their rates and intermediate species. Experiments
can determine the products of combustion and can sometimes detect significant metastabie intermedi-
ates and define their related reaction cross sections, but inference and supposition are always involved

in the assignment of & reaction mechanism.

Our efforts in modeling combustion in hydrogen-containing gas mixtures have led us to consider
the accuracy with which a proposed H,~ O, elementary reaction set describes the chemistry of this sys-
tem. These considerations are important because hydrogen itself is an important fuel and because its

oxidation mechanism plays a fundamental role in the combustion of hydrocarbons. An accurate




.2.

description of hydrogen combustion is also useful because it will help in the evaluation of the likelihood
of deflagration and explosion hazards in industrial facilities such as nuciear reactors. Therefore. the
purpose of this paper is t0: 1) present a homogeneous. gas-phase reaction mechanism descriptive of the
H.— 0, combustion system. 2) describe the computational kinetic work that we have done to test the
accuracy of the mechanism, and 3) summarize our conclusions regarding the general applicability of

this mechanism.

In the work presented here. we have assumed that the individual states of the reacting moiecuies
are equilibrated and that local thermodynamic equilibrium exists. This simplifies the problem and
allows us to use the principle of thermodynamic consistency between forward and reverse reactions to

compute poorly known reaction rates via the equation:
Keq - kfomrd/krwerse' (1)

Here K., is the thermodynamic equilibrium constant and Kjowers aNd Kpyer. are the reaction rate

coefficienis for the associated forward and reverse reactions.

In order to test the proposed reaction mechanism, a series of detailed chemical kinetic calculations
have been performed. The computational code, referred to as CHEMOD, has been described in detail
by Flanigan and Young [1]. Briefly, the code consists of three principal parts: 1) an I/0 main frame
calling program, 2) a symtactical reaction transcriptor (SRT) and differentiai function generator, and 3)
a vectorized version of the asymptotic integration method developed by Young [2]. The SRT was
deveioped by Young explicitly for the CHEMOD code. The code computes total molar concentration,
total mass density, total pressure, internal energy, and individual species concentrations as a function of

time under isothermal or adiabatic constant-volume, ideal-gas reaction conditions.

The resuilts obtained from these calculations have been compared with available measurements of
reaction inductions times, second explosion limits, the temporal behavior of reaction species and reac-

tion equilibrium parameters. These comparisons have been critically evaluated with regard to the

experimental conditions of the measurements. Specifically, contributions by gasdynamic effects have

[ —
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been noted.

II. The H.—O0; Reaction Mechanism

Ever since the early work of Hinshelwood, Sagulin and Semenov [3-7], the H,— O, reaction sys-
tem has been the subject of continuous and intensive research [8-13). In this section. we summarize
some of the important features of this reaction in order to provide a background for the material that
follows. In addition, we discuss some of the details pertinen: to the mechanism that we have used to

describe the H,— O reaction system.

The gas-phase reaction between H, and O, is a complex reaction sysiem composed of a relatively
large number of elementary reactions. The system consists of a chain reaction sequence that branches
between the atomic and free radical chain carriers H, O, HO and HO,. At low temperatures, HO, is
only moderately reactive and is important in chain termination. At temperatures above ~1500°K, HO-

is more reactive and becomes an effective chain carrier.

A principal feature of the H,~ O, reaction sysiem is its demonstration of explosion limits that
vary as a function of pressure and temperature. Information about these limits was initially deduced
from observations made in static cell experiments [14-22]. These studies showed that cell dimensions
and wall surface materials are imporiant faciors and led to the conclusion that heterogeneo.'s reactions
make important contributions in the H,— O, system. This is especially true at the first explosion limit.

The second explosion limit is also affected, but to a much lesser extent.

Figure 1 shows the explosion limit diagram as a function' of pressure and temperature for a
stoichiometric mixture of H, and O,. This figure can be qualitatively understood in terms of the rela-
tionship between chain branching and chain termination first pointed out by Semenov [9] and Hinshel-
wood [8]. They have shown that whenever the rate of chain branching exceeds the rate of chain termi-
nation, fasi combustion occurs. Inversely, whenever the rate of chain termination exceeds the rate of

cbain branching, H, and O, react slowly.
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Thus. at initial pressures below the first explosion limit (where the mean free path of the chain
carriers is comparable to reaction vessel dimensions). chain termination by heterogeneous wall reactions
predominates and a slow reaction is observed. As the pressure of the reaction mixture is increased
(and the mean free path of the chain carriers is decreased), the rates of the bimolecular chain branch-
ing and propagation reactions are increased relative 1o the heterogeneous chain termination reactions.
Finally. chain branching exceeds chain termination at the first explosion limit and the overall rate of the

reaction increases exponentially.

Between the first and second explosion limits, in the region of the explosion peninsula, the gas
mixture explosively ignites at all pressures. At the second explosion limit, chain termination by ter-
molecular reactions becomes important. As the pressure of the reaction mixture is increased to just
above the second explosion limit, the rate of termolecular chain termination overbalances the rate of
chain branching and a slow reaction between H, and O, again predominates. The overall rate of reac-
tion between H, and O, then decreases to a2 minimum and then begins to siowly increase as the pres-
sure is raised above the second explosion limit. The overall reaction rate continues to increase with
increasing pressure until the rate of thermochemical heat release exceeds the rate of heat removed. In
this region, the reactions become self-accelerating, or autocatalytic, and the third explosion limit
becomes defined. At pressures above the third explosion limit, it is thought that all pressures ignite to

expiosion.

The H,- 0. reaction mechanism tested in this work includes all likely homogeneous, gas-phase
reactions among all feasible neutral, electronic ground state species. Reactions were not included that
invoived mechanistically difficult atomic rearrangements equivalent to the operation of two or more
other elementary reactions. Where available data showed that a reaction was not well-known, this reac-
tion was omitted. The reaction mechanism incorporates termolecular reactions presuming that the
major third body constituent of these reactions is a heavy inert species such as argon. In Table 1, we

present the mechanism as a series of forward and reverse elementary reactions and rate constants.

Reaction rate constants were chosen from a survey of available data and are expressed in the




modified-Arrhenius form:
k(T) = ATE exp(C/T) (2)

where k(7) is the iemperature-dependent reaction rate constant, T is temperature (°K) and A, Band C
are constants. For those reactions for which rate constan: information was ejther sparse or not known

at all, an individual rate constant was computed using Equation (1).

Concentration-based equilibrium constants, X;,, were cast into the same modified-Arrhenius form
as the reaction rate constants. A third-order matrix expression was constructed by selecting thermo-
dynamic equilibrium constant data at three points that spanned the 300-3000°K temperature range for

the following equation:
InK;, =InAd,+B,InT ~C,/T, (3)

where K/, and 7, are the equilibrium consiant and temperature of the i th point and 4. B,, and C,,
are constants. The thermodynamic data was taken from the JANAF Tables {23] and from Engleman’s
compilation of kinetic data [24]. Solution of the matrix relation for the three constants~4,,, B,, and
Co—for each forward and reverse reaction pair then provided for the temperature-dependent descrip-

tion of the equilibrium constants as shown in Tabie 2.

Forward and reverse reaction rate constants were checked for thermodynamic consistency over the
300-3000°K temperature range by comparison of temperature plots of reaction rate consiants obtained
by experiment and by use of Equation (1). When a rate constant was either poorly known experimen-
tally or was not consistent with its reverse rate and equilibrium constant, the computed rate constant
was used in lieu of the experimental rate constant. Since there are frequently more problems and larger
errors associated with the measurement of rate constants at elevated temperatures, most of the com-
puted rate consiants are among the endoergic reactions listed as reverse reactions in Table 1. Three

examples of reactions that were found 10 be thermodynamically inconsistent are shown in Figures 2-4.

The use of the thermodynamic equilibrium relationship to compute unknown rate constants is

based on the assumption that the elementary reactions of the H,~O; combustion system involve
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reaciants. intermediates and products that can be described by Boitzmann thermal energyv distributions.
This condition is generally correct in the slow reaction zones of concentrated gas mixtures and even in
the explosively reactive zones of highly diluted gas mixtures. The assumption is supporied by the work
of Asaba et al. [25] and Belles and Lauver {26] who have shown that vibrational equilibration of O in
shock-initiated combustions only affects the H,~ O. reaction kinetics by a very small amount. Thus,
since it appears that large shock-induced disturbances are satisfactorily equilibrated within the induction
time of the reactive gas mixture. we presume that more uniform energy periurbations due to combus-

tion (exclusive of expiosion) are efficiently relaxed so that equilibrium kinetics can be assumed.

The modified-Arrhenius form of reaction rate constants that is commonly used has been obuained
by empirical data fitting. Although transition state (or activated complex) theory [27-29] and collision
theory [30-32] predict non-Arrhenius temperature behavior, neither theory provides an explicit, analyti-

cal iemperature dependence for the rate constant, & (7).

Justification for the use of the modified-Arrhenius rate constants has been provided by a number
of workers [27-36]. Zeliner [28] has recently shown that the additional temperature dependences can
be understood in terms of large variations in state-specific rate constants. k,. In other words, the
vibronic states of an electronic ground state reactant can react at different rates. Birely and Lyman [37]
have reviewed the state-specific (or microscopic) rate constant literature and have found a large body of
experimental evidence that points to a trend towards greater reactivity with increasing internal excita-

tion. As an example, Spencer et al. [38] have considered the reaction

and found that vibrationa! excitation of HO did not substantially affect the overall rate of reaction.
However, Zeliner et al. [28] observed that H, vibrational excitation provided significant siate-specific

rate constant enhancement. Specifically, they found
Ko+, (ve 1V Kostymn) & 1.5 X 10°, (5)

Thus, the additional temperature dependence of the macroscopic rate constant for the HO + H, reac-

¥
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tion, as shown by the concave-upward curvature of the log < (T) versus 1000/T plot in Figure 5. results
from the variation in reactivity of one of its reactants, H,(v). as a function of temperature. This does
not require nonequilibrium thermal distributions of energy among reactants. but is compatibie with a

Boltzmann distribution of reactants over accessible vibronic states.

Of exceptional value in the assembly of the H,- O, reaction mechanism has been the compilation
of Baulch et al. {36] at Leeds University. Although we conducted a literature search 1o update the rate

constants in this compilation, very little difference was found in the rate constant reports following their

publication date of 1971.
1I1. Imduction Time Calculations

A. Background

Reaction induction times, also called ignition delay times, have become important parameters
measured in chemical kinetic studies. Although a number of workers had previously studied induction
times in the H,~ O, system [40-41], Schott and Kinsey were one of the first 1o use these measurements
10 examine H,— O, reaction kinetics [42]. In these experiments. they showed the inverse dependence
of induction time on [0O,] and were abie to caiculate a rate coefficient for the important chain branching
reaction, H + O; — HO + O. Following these initial investigations, a large amount of work was
devoted to the elucidation of the details of the H,~ O, mechanism using induction time measurements.

This information has been reviewed by Schott and Getzinger [43].

The induction time of a reaction is defined to be the length of elapsed 1ime between the time of
reaction initiation and the time when reaction is first observed. Ambiguity arises when this definition is
applied to: 1) a system in which reaction initiation is not instantaneous and 2) a system where reaction

observation depends upon the sensitivity and specificity of the observing apparatus.

Ambiguity concerning reaction initiation is usually resolved by limiting the determination of reac-

tion induction times to experimental apparatus in which the rise time of a temperature jump or of a
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reactive species concentration is of the order of a few microseconds or less. Reaction perturbations
with rise times this short have generally been found 10 satisfv effectively the constraint of instantaneous

reaction initiation.

The end of the induction period is often obvious since, even for large variations in reaction condi-
tions, it is usually associated with an exponential growth of intermediate species concentrations. This
situation is generally accompanied by similar increases in pressure and temperature. Thus, variations in
sensitivity and specificity between apparatus conforming to the instantaneous reaction initiation criterion

should oniy result in small systematic discrepancies in data.

Because of the above considerations, shock-tube experiments represent one of the principal
methods used to measure induction times. In addition to approximating instantaneous reaction initia-
tion, these experiments usually provide at least two other desirable features: 1) isothermal and 2)

homogeneous reaction conditions.

A near isothermal reaction condition is achieved when thermochemical effects are mitigated by
the dilution of reactive mixtures. Diluents commonly used are inert gases such as argon and helium.
There is, however, another factor peculiar to shock-tubes that causes deviations from the ideal isother-
mal reaction condition. This has been discussed by Belles and Brabbs [44] and Mirels [45] who have
shown that boundary layer growth in the flowing gases behind incident shocks can increase gas tempera-
ture, density and particle residence time. In those shock-tube experiments that do not account for this
effect, incorrect temperature estimates can result. Studies that are most likely affected involve reactions
having high activation energies. Consequently, it is generally held that reaction rate coefficients
obtained by shock-tube measurements prior to ~1970 (when it became common practice to make
boundary layer corrections) shouid be suspected of high apparent values. Similarly, induction time
measurements made in shock-tube experiments not correcting for boundary layer effects should be

suspected of being underestimated.

Another advantage of shock-tube experiments is that they permit data to be collected in time
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periods that are short in comparison to gas diffusion rates. This eliminates the possibility of hetero-
geneous wall reacuons. Since the elementary reaction mechanism contained in Table ! consists solely
of homogeneous reactions, shock-tube measurements should provide excellent daia for testing numeri-

cal calcuiations using this reaction set.

Studies of the variation of H, - O, reaction induction time as a function of pressure. temperature
and reactant composition have identified two principal regions of ignition. Schott and Kinsey [42)]
observed that above —1100°K and below ~2 atm (the high-temperature. low-pressure region. which

we shall designate "HTLP") their induction time measurements could be related by:
logof[O);7;} = 4 + B/T (6)

where [O,]; is the initial O, concentration, 7, is the induction time, 4 and B are constants and T is the
temperature. They derived this expression from a partial steady state analysis of the following mechan-
ism:
Hy,, O+ M —H,OHO+ M
H+0,—HO+0
O+H,—HO+H
HO+H;~H,0+H
H+0;,+M—HO,+ M
Miyama and Takeyama [46] carried out similar experiments to those of Schott and Kinsey and
were also able to identify an inverse dependence of induction time on [0,],. However, when Miyama
and Takeyama extended their induction time experiments to temperatures below ~1100°K and pres-
sures above ~2 atm (the low-temperature, high-pressure region, which we shall designate "LTHP"),
they observed two consecutive temporal jumps in HO concentration. The first HO concentration rise
was not accompanied by a pressure increase, whereas the second HO concentration was associated with
a simultaneous jump in pressure. Their attempts to understand their pressure-jump data did not show a
correlation of induction times with [0,],, but did show a correlation with [H,],. Similar results were
obtained by Strehlow and Cohen [47], Fujimoto [48] and Skinner and Ringrose [49]. In addition 10

these observations. Soloukin and coworkers [50] and Meyer and Oppenheim [51) have reporied that
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their schlieren experiments have shown two distinct types of ignition. A sharp. or single source, fast
ignition was observed in the HTLP region and a mild. or multiple source, slow ignition was observed in

the LTHP region.

A qualitative understanding of the characteristics that differentiate the two regions of H, - O- igni-
tion can be obtained by considering the extended second explosion limit shown in Figure 6. Brokaw
[52] has derived an analytic solution of a simplified reaction mechanism that simulates the different
behavior found in the "sharp” and "mild" ignition region. In addition, Wakefieid. Ripley and Gardiner
[53] have demonstrated the origins of some of those differences by comparing analytic and numeric
solutions of a more detailed reaction mechanism. In brief, the results of these studies have shown that
the two regions of ignition are separated by the extended second explosion limit, at which the rate of
chain branching is balanced by the rate of chain termination. To the left of the exiended second limit,
in the LTHP region, the HO, concentration becomes significant and its bimolecular reactions become
important in mild ignition. To the right of the exiended second limit, in the HTLP region, chain

branching reactions among H, O and HO dominate and lead to sharp ignition.

B. Results

The information discussed above indicates that homogeneous reactions predominate in both the
LTHP and HTLP regions of ignition in H,— O, gas mixtures. Thus, we have calculated H;~ O. reac-
tion induction times for both regions using the mechanism given in Tabie . For the LTHP region, we
have computed a set of induction times for initial conditions descriptive of the work by Skinner and
Ringrose [49]. These are shown in Figure 7. For the HTLP region, we have calculated a series of
induction times using the reaction conditions of White [54]. These data are presented in Tabie 3. The
agreement between the caiculated and experimental induction times found in both the HTLP and
LTHP regions of H.— O, ignition supports the mechanism of Table 1 in its description of the initial

phases of reaction.

As a2 means of investigating the functional behavior of induction time in the H,~ O, system, we
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have performed a number of adiabatic and isothermal caiculations while varying initial temperature.
pressure and extent of N. dilution. Under the conditions of these calculations, N, does not participate
as a reactant but only as an inert diluent. We show the adiabatic temperature versus reaction time
curves that were generated for a stoichiometric Ha-air mixture in Figures 8-11. In these curves, the ini-
tial temperature was varied from 900 to 2000°K in 100°K increments for each of the initial pressures
0.05. 0.5. 5 and 50 atm. The times at which the H atom and HO radical intermediates experience their
concentration maxima appear to coincide and are indicated by arrows on each curve. It is noted that
these times also correspond to the first temperature increases and exponentially increase with decreasing
initial temperature. It is also seen that the curves generated in the HTLP regions show a distinctly
different form than the curves generated in the LTHP regions. These observations seem 1o agree with

the different ignition patterns reported for these two regions.

In Figures 12-14, we show the induction time dependence on initial iemperature and pressure as a
function of dilution of a sioichiometric H;— 0O, mixture. The change in ignition pattern, as demon-
strated by induction time, between the LTHP and HTLP regions is observed as a shift toward sharper,
exponential increases in induction time with decreasing initial temperature and increasing initial pres-
sure. The dilution effect appears to uniformly increase induction time for the stoichiometric, reactive
mixtures and does not significantly change the form of the induction time dependence on initial tem-

perature and pressure. These observations are in agreement with those of Meyer and Oppenheim [51].

The change in behavior of induction time and, thus, ignition may possibly be better demonstrated
in Figure 15. In this figure. induction time is plotted as a function of initial pressure for each of three
isothermal calculations. Initial temperature conditions were 1000, 1100, and 1500°K. It can be seen
that the pressure dependence of induction time clearly makes a shift below 1100°K and above ~2 aim.

Miid ignition affected by hydrodynamic interactions with chemistry can be easily imagined in a situation

where induction times are relatively long.

RURCR
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IV. Second Explosion Limit Caiculations

A. Background

The line showing the division between explosive and nonexplosive regions (fast and siow reac-
tion) for a stoichiometric H.— O- mixture contained in a KCi-coated reaction vessel has been shown in
Figure 1. The line makes its excursion between ~650-850°K and between ~1-5000 torr and is divided

into three segments designated as the first, second and third explosion limits.

As mentioned previously, the three explosion limits have been investigated in static flow experi-
ments that have demonstrated how important the dimensions and materials of the reaction vessels are
in determining points of explosion. These observations firmly established the significance of gas-
dynamic processes in #hese experiments. They have also shown that the first and second explosion lim-
its depend upon the chain branching chemistry of the H,— O, system [22]. However, there is still
some quesilion concerning the mechanism of the third explosion limit: i.e., whether it is controlied by

thermal or chain branching processes [55].

In order to describe the influence of chain reactions at the first and second explosion limits. it has
become common practice to consider the concentration of a typicai chain carrier [43]:

diC)/dt = I + BIC] = TIC] = I + NI[C] )

where [C] represents chain carrier concentration, / is the initiation rate, B is the rate of chain branching
and T is the chain termination rate. The N of Equation (7) is the net sum of the rates of chain branch-
ing and chain termination and is an important parameter used in describing the concentration of a chain

carrier in the early stages of reaction.

Assuming initia! reaction rate conditions, where I, B and T are well-defined and {C] is negligible,
Equation (7) may be integrated to give

[C) = (I/N) [exp(Nt) - 1). (8)

Two limits of this equation describe the chemistry on opposite sides (siow versus fast reaction) of an
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explosion limit controlled by chain reaction chemical kinetics. In the first case, where chain termina-
tion dominates chain branching (i.e.. 7 > B), N is negative and {(] is forced 1o approach a concentra-
tion approximated by (//N). In the second case. where chain branching overshadows chain termina-
tion (i.e.. B > 1. N is positive and [C] exponentially increases with time. In this latter situation, a
large amount of heat is released in a short time inierval and the total compiex of elementary reactions

is accelerated to fast reaction (explosion) by thermal feedback or autocatalysis.

The H,— 0O, mechanism responsible for this behavior may be summarized in terms of its most
imporiant reactions. The three elementary reactions of major significance 10 chain branching in the

vicinity of the first and second explosion limits are [42]:

H+0,~HO+0 9
O+H;—HO+H (10)

Similarly, chain initiation involves the four-center reaction [56]):

although a number of alternate initiation reactions may play an important role. Where the reactivity of

H > > HO,, chain termination occurs principally by the reaction [13]:

H+0,+ M—HO,+ M. 13)

In addition, two other termolecular reactions have been shown to be important chain termination reac-
tions [57):

H+HO+M—H O+ M (14)
H+H+M—H,+ M 15

Although these eiementary reactions do not constitute a complete reaction mechanism, they are pri-

marily responsible for many of the features of the first and second explosion limits.

B. Resulits

Because the second explosion limit is largely determined by the homogeneous chemical kinetics of

the H,—-0, system, we have tested our mechanism by performing a number of calculations of
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parameters associated with this limit. Although several other numerical studies. using either abbrevi-
ated reaction mechanisms or varying individual reaction rate coefficients, have examined the second
explosion limit [55.58.59], we have based our evaluations on straightforward computations involving a
complete reaction set. We have not varied the rate coefficients 1o achieve better fits 10 data. In these
calculatjons, it was not our purpose to fit a parameter put rather to compare computed and experimental

results and 10 try to understand the significance of any agreement or disagreement.

F . As 2 first step. we have made a series of calculations describing a 0.5 atm, H,:0./2:1 reaction mix-
' ture at 10°K intervals from 808 1o 848°K. The behavior of intermediate species concentrations was fol-

lowed temporally and was recorded as a function of initial temperature.

» As shown in Figures 12-14, we found that reaction induction time increases exponentially with
decreasing initial temperature. This behavior is also observed in the temporal plots of the hydroxyl rad-
ical concentration presented in Figure 16. The pattern continues up to a temperature between 818 and

» 828°K, where further reduction of initial temperature resuits only in linear increases in induction time.

At about the same temperature, a part of the exponential growth in HO concentration appears to van-
ish. This transition occurs within 10°K and appears to be linked to the loss of ignition at the second
3 4 explosion limit. In addition, we believe that this latter feature may also be tied to the experimental
observation of spikes and overshoots of intermediate species concentrations noted in shock-tube experi-

ments conducted close to the second explosion limit [43].

Using the above changes in induction time and hydroxy!l radical behavior to define the crossing of

the second explosion limit, we have computed a2 set of points in the temperature-pressure plane that !

[ corresponds to the second explosion limit of a stoichiometric Hy~ O, gas mixture. These results are
presented in Figure 17 where they are compared to the experimental work of Lewis and von Elbe [11].
We note that the calculated values show & second explosion limit uniformly lower in temperature than
1 that which was observed in & 7.4 cm diameter, KCl-coated reaction bulb. This discrepancy can be attri-
buted to the fact that we have modeled homogeneous chemistry in a situation where heterogeneous

chemistry also plays a part. The displacement of our calculated data towards lower temperatures is

h;ﬂ“j‘—‘ o oo
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consistent with the idea that the absence of heterogeneous termination reactions in our mechanism

would require less thermal energy supplied to branching reactions to overbalance chain termination.

By examining the production and loss terms for each chemical species, we have observed that the
major reaction channel for consumption of HO changes as the initial reaction temperature is reduced
below the second explosion limit. Specifically, the chain branching reaction, H + O, — HO + O
(Equation 9), is replaced by the chain termination reaction. H + Oy + M — HO, + M (Equation 13).
This observation appears to coincide with the disappearance of the second [HO] exponential increase
shown in Figure 16. On the explosive side of the second explosion limit and at the poini of ignition,
reaction (13) becomes an insignificant channei for production of HO, and reaction (3) becomes a major
channe! for production of HO. On the nonexplosive side of the second explosion limit, reaction (13)
remains the primary channel of formation of HO,, with an increase in HO, concentration followed by

enhanced reaction rates for HO, and H,0,.

Defining the initial reaction rate to be proportional to the rate of formation of HyO, we have com-
puted this parameter above the second explosion limit. Figure 18 presents the results of a calculaltion
of d[H,0}/dt as a function of pressure along a 760°K isotherm for a stoichiometric H,— O, gas mixture.
The behavior of the calculated initial reaction rate above the second explosion limit closely resembles
that experimentally determined by Lewis and von Elbe [60]. As the pressure of the reactive gas mix-
ture is raised above the second explosion limit, the initial reaction rate falls rapidly from extremely

large values to a minimum and then begins to gradually climb as pressure is increased.
V. Temporsl Behavior of Reaction Species

A. Background

Since a good deal is known about the individual elementary reactions of the H,—O, system
(specifically, their rate coefficients as a function of temperature), it is possible to test the complete reac-

tion mechanism by comparing computed and observed temporal profiles of reaction species concentra-

tions. In the shock-tube, temporal profiles of species concentrations have been determined typically as

—————— e
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a function of the stage of H. combustion. Moreover, these experimental profiles have not been pub-
lished in simple. time-based plots of species concentrations, but are commonly used to derive other

quantities such as exoonential growth parameters, which are discussed below.

The H,— O, reaction system, under low-density conditions, has been shown 10 proceed by well-
defined stages of combustion: i.e., 1) induction, 2) transition. 3) partial equilibrium, and 4) full equili-
brium. Chain initiation, branching and propagation reactions appear to dominate the induction stage of
combustion. The transition stage primarily involves chain branching and propagation and is the region
wherein species concentration spikes and overshoots are observed. Association reactions become impor-
tant in the partial equilibrium stage of system reaction, and, finally, the full equilibrium stage of

combustion occurs when all reaction rates become balanced.

B. Results

Since the hydroxy! radical is the intermediate species most often studied in shock-tube investiga-
tions of the Hy~ O, system [43], we have caiculated its behavior in the various stages of H, combus-
tion. Generally speaking, direct observation of the other intermediate species has been hampered by a
lack of methods having the required sensitivities and response times. The O atom concentrations have
been measured, but primarily by methods that invoive the presence of CO as a reactant [61]. This
technique requires another set of elementary reactions that must be considered before the O atom con-
centrations can be calculated. The H atom concentrations have recently been measured, but these
results appear to suffer from the presence of impurities [62]. The temporal behavior of HO, in shock-

tube work is not well known.
Throughout most of the induction stage, the HO concentration has an exponential growth rate and
may be ¢xpressed as:
[HO] = [HO], exp(e?) (16)

where ¢ is time and ¢ is the exponential growth parameter that depends upon chain branching, propaga-

tion and termination as outlined in Section IV. Jachimowski and Houghton [63] have investigated

1 I—

. T R~
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[HO) in the induction period using incident shock-wave experiments coupled with ultraviolet absorption
spectroscopic detection of HO. From their daia, they caiculated € for a variety of fuel-rich and fuel-
lean H,:0;:Ar gas mixwre at different temperatures. Typically, they identified an induction time
corresponding with a detectable level of HO concentration and defined [HO], as a pseudo-initial con-

centration related to the rate of initiation. By rewriting Equation (16) as:
re = In [HO],/[HO], an

they were able to calculate the pseudo-initial hydroxyl concentration. [HO],, as a function of their
graphically measured induction time, 7, exponential growth factor, €, and induction-time-related HO

concentration., [HO]..

We have performed several computations involving the induction stage of combustion using
Jachimowski and Houghton’s initial reaction conditions. In Table 4, we present a comparison of their
experimental and our calculated, [HO}-based, exponential growth parameters. A comparison of €/[0,],
versus 1000/T is also provided in Figure 19 to demonstrate the temperature and reactant concentration

dependencies of the HO exponential growth parameter.

Getzinger and Schott have examined the partial equilibrium stage of H, combustion using HO
concentration profiles {64]. In their experiments, they initiated the reaction using incident shock-waves
and then followed the progress of the reaction using HO ultravioiet absorption spectroscopy. The par-
tial equilibrium stage of combustion occurs when the reaction cycle reaches a point at which the ter-
molecular association reactions decelerate the overall reaction rate. The result is that the reaction
species concentrations remain essentially constant for a protracted time interval. These concentrations
may be caiculated from a single known concentration once the appropriate equilibrium constant infor-

mation is known.

Following the experimental measurement of the [HO)] profiles for a number of fuel-lean H;- O,
mixtures, Getzinger and Schott ceiculated the temporal behavior of the remaining reaction species using

analytic functions describing the partial equilibrium condition. In order 1o focus on the recombination

e i N e
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zone of reaction, they calculated concentrations in terms of a dimensionless reaction progress variable,

v, defined by the equation:
y = (N = N/ (1= Ng) (18)

where N is the instantaneous species concentration and N,, is the species concentration at full-

equilibrium. Thus, reaction initiation occurs at ¥ = 1 and full-equilibrium is attained at y = 0.

We have caiculated the temporal behavior of each of the reaction species concentrations as a func-
tion of y for one of the fuel-lean H,— O, mixtures examined by Getzinger and Schott. Our date is
presented in Figure 20 and includes a set of points representative of those obtained experimentally for

[HO). The calcuiated data appears to be almost identical with the measured data.

In addition, we have caiculated the temporal behavior of the reaction species number densities for
the same H,:0.:Ar mixture used above and for a mixture containing no Ar. We show these data in
Figures 21 and 22. These figures demonstrate the increased reaction time effect that dilution has on
the partial equilibrium stage of combustion. They ailso show the relation of the partial equilibrium stage

of reaction to the other stages of combustion.

VI. Reaction Equilibrium Calculations

Another test of the detailed H,-O, mechanism is 10 determine whether the mechanism can predict
the species concentrations once chemical equilibrium is reached. Under adiabatic conditions, this
means that certain state and thermodynamic variables are accurately determined. In this section, we
compare the long-time equilibrium results of our computations with those obtained using the NASA.

LEWIS "Computer Program for Calculation of Complex Chemical Equilibrium Compositions” [65].

The comparison described in this section is between two entirely different computational methods.
The NASA-LEWIS Program uses a minimization of Gibbs (or Helmholtz) free-energy technique to
derive the composition of the chemical equilibrium mixture, whereas our caiculations involve the

numerical integration of time-dependent, ordinary differential equations defined by the reaction

mechanism contained within Table 1. The use of a search routine by the NASA-LEWIS Program to
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define the reaction species inciuded in their calculation adds generality 10 the comparison.

We nave carried out calculations with both programs to obtain the chemicai equilibrium composi-
tion of an adiabatic. constani-volume combustion of one atmosphere of stoichiometric hydrogen-air
(H+:0::N,/2:1:4) with an initial temperature of 900°K. A comparison of our computed data is
presented in Table 5. In addition to the reaction species concentrations. the chemical equilibrium mix-
ture density. pressure and temperature are calculated. The excellent correlation between the two sets of
computed data substantiates the detailed mechanism of Table | as a good description of the reactive

system in its approach to chemical equilibrium.

Moreover. the NASA-LEWIS Program calculations are in agreemeni with our initial assumptions
regarding: (1) the inert character of N, as a diluent, and (2) the predominant role of neutral species in
the H,—O- reactive system. Several NASA-LEWIS Program computations were made in which ionic
species and nitrogen-containing reaction species were allowed to participate in the chemical equilibrium
mixture. In all situations where the final adiabatic temperature was below —3000°K. it was found that

N- remained essentially inert and that ionic species concentrations were negligible.

V1. Summary and Conclusions

The principal goal of the work presented in this paper was 10 determine the accuracy with which a
proposed reaction mechanism is able to model the chemistry of the H,— O, reactive system. Since
analytical and intuitive interpretations of experimental evidence, coupled with conjecture and supposi-
tion. are the common tools used in the construction of a detailed reaction mechanism. we have
searched for experimental data relatively free of hydrodynamic and diffuse transport effects against
which we could test the proposed mechanism. Although it is not possible 1o define measurable parame-
ters that are unaffected by gasdynamic interactions, some that are minimally affected include: (1) the

reaction induction (delay. ignition) times. (2) the temperature-pressure dependence of the second

explosion limit. (3) the rate of reaction above the second explosion limit. (4) the 1emporal behavior of

reaction species. under certain circumstances (i.e.. shock tubes).
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The elementary reactions most imporiant in determining the ignition properties of the H,—O,
system are those involved in chain initiation, branching and propagation. Reaction induction times,
which depend on the iniegrated effect of these reactions, have served as a good test of the mechanism
in this regime. The agreement between experimenial and computational ignition delays appears to
confirm the se: of elementary reactions in its descriptic= of the initial reaction phase of the H.— O, sys-

em.

More specifically, we have shown that calcuiations in the high-temperature, low-pressure (HTLP)
region of H, combustion correlate well with experimental induction times. This region is characterized
by strong. single-source or integrated kernel ignition having a sharply defined blasi-front. The sharp-
ness and uniformity of this strong ignition implies that timescales for chemical interactions are much
shorter than timescales for hydrodynamic interactions and, thus, we might expect good agreement

between the caiculations and experiment.

However, ignition in the low-temperature, high-pressure (LTHP) region is affected by the cou-
pling of gasdynamics and chemistry. This is demonstrated by the mild, multipie source or multiple-
kernel appearance of laser-schiieren experiments. Even though this region represents the worst case for
zero-dimensional calculations of induction times, there is good agreement between computed and

experimental induction times.

The second explosion limit calculations provide a different kind of test of the H;~ O, mechanism.
In these calculations, third-body recombination or association reactions are important and compete with
the bimolecular chain-branching and propagation reactions. Our calculations were performed for
stoichiometric H,— O, mixtures in the slow-reactive zones of the temperature-pressure plane. They
show that, for a given pressure, the caiculated and measured explosion limits disagree by about 20°K.
This discrepancy, however, is undersiandable when we take into account the fact that the first and

second explosion limits are affected by vessel dimensions and materials. In the experimental results

shown in Figure 17, there is a contribution to the exponential growth factor, ¢, of Equation 6 due to
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chain termination by heterogeneous reactions on the chamber walis. Thus. the need 1o include hetero-
geneous reactions indicates an imporiant difference between our mechanism and one necessary for the
description of this specific experiment. Nevertheless, these expiosion limit calculations have shown the
correct trend of the second explosion limit. The displacement of the caiculated results toward lower
temperatures is reasonable when the absence of heterogeneous reactions in our mechanism is con-

sidered.

An additional test of the mechanism in Table 1 was provided by computations carried out along
an isotherm in the slow-reactive zone above the second explosion limit. The appropriate balance
between bimolecular chain branching and termolecular chain termination is demonstrated by the calcu-

lated results for the overall reaction rate producing H,O as presented in Figure 18.

Comparisons were also made between calculations and experimental measurements of the tem-
poral behavior of hydroxyl' radicals under different reaction conditions found in shock-tube experi-
ments. These HO concentrations were first calculated for the induction period of highly-diluted.
H,-0; gas mixtures. Exponential growth factors, €, were caiculated for a number of temperatures,
pressures, and H; — O,-diluent mixture compositions. As shown in Table 4, the experiments and calcu-
lations are in good agreement. These tests also help substantiate the chain initiation, branching and

propagation parts of the reaction mechanism.

The partial equilibrium stage of H, combustion is the region in which termolecular association
reactions become important to the deceleration of chain-linked reactions. Here is where the major
amount of thermochemical energy release is achieved. The temporal behavior of HO concentrations in
this stage was calculated and is shown together with the experimental resuits in Figure 20. Here, again,
goo;i sgreement between experiment and computation was obtained. This, as in the second explosion

limit calculations, adds support to the validity of the chain termination reactions.
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Finally, the proposed reaction mechanism was used to calculate the species concentrations. den-
sity, temperature and pressure of a reaction mixture that had reached chemical equilibrium. The good
agreement obtained between the results of this calcuiation and a calculalion and a calculation made
using the NASA-LENIG Program (which is 2 technique for caiculating equilibrium properties based in
minimization the the free energy) supports the general validity of the proposed reaction mechanism,

the reaction rate coefficients, and the species enthalpies.
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Table 1. H, - O. Elementary Reaction Mechanism.

! ki = AT® exp (-C/T)™

3 N i Reaction Source
1 ' A B c®
1  H+HO=0 + H, 1.40(=14) 1.00 | 3.50(+03) | Baulch et al., 1972
-1 3.00(-14) 1.00 | 4.48(+03) | Bauich et al., 1972
¢ 2 | H + HO; = H. + 0. 4.20(-11) 0.00 | 3.50(+02) | Bauich et al., 1972
-2 9.10(-11) 0.00 | 2.91(+04) | Bauich et al., 1972

= 3 | H+ HO,=HO + HO | 4.20(~10) | 0.00 | 9.50(<+-2) | Bauich et al., 1972
-, 3 2.00(=11) | 0.00 { 2.02(+04) | Baulch et al., 1972

¢ 4 | H+ Hi=0+H;0 8.30(-11) 0.00 | 5.00(+02) | Hampson, 1973 ;
-4 L75(=12) | 0.45 | 2.84(+04) | k, = kK<
5| H+ H0,=HO;+H, | 280(=12) | 0.00 | 1.90(+03) | Bauich et al., 1972 '
-5 1.20(-12) 0.00 | 9.40(<+03) | Bauich et al., 1972
' 6 | H+ H.0O,=HO +H;0 | 5.28(~10) | 0.00 | 4.50(+03) | Bauich et al.. 1972
{ —6 3.99(—=10) | 0.00 | 4.05(+04) | k = ki/K.
3 71 H+0,=HO~0, 2.70(-11) 0.00 | 0.00(+00) | Hampson, 1973
-7 5.20(~15) | 0.69 | 3.86(+04) | k, = k/K.
] ¢ 8 | HO + H,=H = H,0 1.83(~15) 1.30 | 1.84(+03) | Cohen and Westberg, 1978
-8 1.79(<14) 1.20 { 9.61(<+03) | Cohen and Westberg, 1978
3 9 | HO + HO = H, + 0, 1.09(=13) | 0.26 | 1.47(+04) | k, = kK.
-9 2.82(=11) | 0.00 | 2.42(+04) | Olson, 1977
b
¢ 10 | HO+ HO=0+H,0 | 1.00(~16) 1.30 | 0.00(+00) | Cohen and Westberg, 1978
] -10 3.20(-15) | 1.16 | 8.77(+03) | k, = k/K.
11 | HO + HO, = H,0+ 0, | 8.30(=11) | 0.00 | 5.03(+02) | Lioyd, 1974
-11 2.38(=10) | 0.17 | 3.69(+04) | k = k/K.
)

12 | HO + H,0,=HO;+ H; | 1.70(-~11) 0.00 | 9.10(+02) | Bauich et al., 1972
-12 4.70(-11) 0.00 | 1.65(+04) | Baulch et al., 1972

13 | HO + O; = HO, + 0, 1.60(-12) 0.00 | 9.56(+02) | Hampson, 1973
-13 6.69(-14) 0.33 | 2.04(+04) | k. = k/K,

14 | HO; + Hy=HO + H,0 | 1.20(~12) 0.00 | 9.41(+03) | Otson, 1977
-14 1.33(-14) 0.43 | 3.62(4+04) | k = ko'Kc

15 | HO; + HO, = H;0, + 0, | 3.00(-11) 0.00 | 5.00(+02) | Hampson, 1973
=15 1.57(=09) | —0.38 | 2.20(+04) | k.= ki/Kc
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Table 1 (Continued). H, — O- Elementary Reaction Mechanism.

ki = AT® exp (~C/T)™

i Reaction Source {
A® B ct |
16 | HO; + O; = HO + 20: 1.70(<13) 0.00 1.41(+03) | Lioyd. 1974
-16 9.94(~46) 0.16 1.60(+04) | k, = ki/K.
17 | O+ HO=H + O, 2.72(=12) 0.28 | —8.10(+01) | kr= kK.
-17 3.70(=10} 0.00 8.45(+03) | Baulch et al.. 1972
18 | O+ HO, = HO + O, 8.32(-11) 0.00 5.03(+02) | Lloyd. 1974
-~18 2.20(-11) 0.18 2.82(+04) | k.= k/K
19 | O + H,0, = H,0 + 0, 1.40(=12) 0.00 2.12(+03) | Hampson, 1973
-19 5.70(-=14) 0.52 4.48(+04) | k, = k/K
20 | O + H,0, = HO + HO, 1.40(-12) 0.00 2.13(+03) | Hampson, 1973
=20 2.07(-=15) 0.64 8.23(+03) | k.= ki/Kc
21 1 0O+0;=0,+ 0, 1.89(=11) 0.00 2.30(<+03) | Hampson. 1973
=21 1.98(~11) 0.00 5.06(+04) | k, = ki/K.
22 {H+H+-M=H,+ M 1.80(=30) | ~1.00 0.00(+00) | Baulch et al., 1972
-22 3.70(-~10) 0.00 4.83(=04) | Baulch et al., 1972
23  H+HO+M=H O+ M 6.20(~26) | -2.00 0.00(<+00) | Bauich et al.. 1972
~23 5.80(-~09) 0.00 5.29(+04) | Bauich et al.. 1972
2 | H+0;,+M=HO,+ M 4.14(~33) 0.00 | -5.00(+02) | Bauich et al.. 1972
-24 3.50(=~09) 0.00 2.30(+04) | Bauich et al., 1972
25 | HO+ HO+ M = H;0, + M | 2.50(~33) 0.00 | —2.55(+03) | Bauich et al., 1972
-25 2.00(~07) 0.00 2.29(+04) | Baulch et al.. 1972
261 0+H+M=HO+M 8.28(~29) | —-1.00 0.00(+00) | Bahn. 1969
-26 2.33(~10) 0.21 5.10(+04) | k, = ki/K
27 | 0O+HO+M=HO,+ M 2.80(~31) 0.00 0.00(+00) | Bahn, 1969
~21 1.10(~04) | —0.43 3.22(+04) | k. = ke/K.
221 O+0+M=0;+M 5.20(~35) 0.00 | =9.00(+02) | Baulch et al., 1972
-28 3.00(~06) | —-1.00 5.94(+04) | Baulch et al.. 1972
29|10+0;,+M=0,+M 3.31(~35) 0.00 | —-9.80(+02) | kr= kK,
-29 7.16(=10) 0.00 1.12(+04)

() Bimolecular reaction rate constants are given in units of cm’/ (molecule sec).

®Exponentials to the base 10 are given in parenthesis: i.e.. 1.00(=10) = 1.00 x 107,

Heimerl, 1979
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Table 2. H;—0, Elementary Reaction Equilibrium
Constants'®
o K = ki/k, = AT " exp (Co/ T
[ 4 1
F Aeg B.q Ceg
3 1 6.13(~01) ~3.99(=02) 9.67(+02)
‘ 2 5.52(+00) -3.30(<01) 2.86(+04)
3 3.32(+03) —6.89(<01) 1.89(+04)
4 1.13(+02) -5.55(=01) 2.76(+04)
\ 5 3.46(+02) —6.57(=01) 7.09(-+03)
6 1.68(+05) —1.30(~+00) 3.37(+04)
7 7.88(+04) -1.02(+00) 3.83(+04)
8 5.09(<02) 1.84(-01) 7.80(+03)
9 1.67(<=01) 3.60(—01) 9.66(+03)
s ' 10 3.12(-02) 1.44(=01) 8.77(+03)
‘ 11 3.53(=01) ~1.73(=01) 3.63(+04)
12 3.34(+01) ~5.55(<01) 1.48(+04)
13 2.30(+02) -3.29(—01) 1.94(+04)
14 1.78(+02) -5.11(-01) 2.66(+04)
15 1.08(—02) 3.77(-01) 2.15(+04)
R 16 1.71(+31) ~1.62(~01) 1.46(+04)
17 2.72(-03) 3.99(-01) 8.69(+03)
L 18 9.55(+00) -2.96(-01) 2.75(+04)
] 19 4.06(—02) 5.20(=01) 4.27(+04)
z 20 6.76(+02) —6.40(—01) 6.10(+03)
21 2.63(+02) —6.48(—01) 4.69(+04)
» ’ 22 1.80(-24) ~1.71(-01) 5.22(+04)
23 9.15(~26) 1.30(-02) 6.00(+04)
24 3.41(=25) 1.53(=01) 2.36(+04)
25 1.36(=29) 8.95(=01) 2.60(+04)
26 2.94(—24) -1.31(=01) 5.12(+04)
l 27 8.92(-28) 5.57(—01) 3.23(+04)
' 28 1.03(=26) 2.38(-01) 5.99(+04)
29 2.66(—28) 6.54(=01) 1.28(+04)

@ Equilibrium constants are given in the non-Arrhenius for-
mat used for the individual reaction rate consiams and are

computed to cover the 300-3000 °K range.
refers 10 the reaction index of Table 1.
K, is given as the concentration based equilibrium constant

({1 "
{¢)

(K.) and is dimensioniess except for equilibria involving
association-dissociation where it is given the units of

em’/molecuie.




Tabie 3. Fuel-Lean Induction Times in the high-temperature,

low-pressure (HTLP) Region.

Initial Mi?:Fure .. Reaction Induction Times
T Composition Initial r. (usec)
est (Moles/Liter) @ Temperature '
No. (oK)
[H,] [0,] [Ar] Expt.®’ Calc. @
1 2.99(—4) | 9.67(<3) 0 1200 51 50
2 2.99(—4) | 9.67(=3) 0 1600 8 11
3 2.99(—4) | 9.67(-3) 0 2000 2.5 4
4 7.48(=5) | 2.99(~4) | 9.60(-3) 1200 580 455
] 7.48(=5) | 2.99(—4) | 9.60(-3) 1600 88 84
6 1.50(—4) | 5.98(—4) | 9.22(-3) 1600 44 43
7 1.50(=4) | 5.98(—4) | 9.22(-3) 2000 14 16

(a) Exponentials to the base 10 are given in parentheses: i.e.. 1.00(=10) = 1,00 x 10710,

(b) Experimenial data were obtained from the correiation function of the incident shock data published by
D.R. White [54).
(c) Caiculated data presents =, as the time at which the H atom concentration reached a maximum.
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Table 4. Induction Zone Exponential Growth
| ) Parameters for [HOJ.
T t TE
| iouns | TG | P
: Calc® | Expt®
? 4:1:95 1140 0.62 11.88 11.31
1840 0.57 5.56 6.05
E 3:3:94 1124 062 | 1054 | 1L72
! 1780 0.27 6.00 4.46
E ' » 1:4:95 1165 0.64 9.72 13.96
‘ 1802 0.28 5.72 6.16
1:8:91 1230 0.72 8.55 10.53
: 1700 0.27 5.58 5.84
I\ ) @)1nduction times. 7. were calculated using Jachimowski and Houghton's
criterion of [HO] = 1.0 x 1077 mole/liter 10 determine the end of the
induction period.
®) jachimowski and Houghton have estimated the experimental error in
. re 10 be about 10%.
{
’
’
)
o
{ ]

et e < ks ———— e
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Table 5. Comparison of Chemical Equilibrium Compositions
obtained by Calculation.

Variable NASA® Mechanism *’
X (Mole Fraction)
H, 4.82(~02)'¢ | 4.81(=02)
0, 1.86(—02) 1.75(-02)
H 2.38(—02) 2.29(=02)
0] 8.98(—-03) 8.22(-03)
HO 2.77(~02) 2.86(=02)
HO, 1.60(—06) 1.34(—06)
H,0 2.42(~01) 2.48(-01)
H.0, 1.11(=07) | 7.28(~08)
0; 3.62(-10) 2.60(=10)
p(g/cm?) 1.43(—05) 1.45(<05)
P(aim) 1.31(-=01) 1.33(=01)
T (°K) 2607 2634
{a) Data computed using Gordon and McBride modification of
NASA Program. §
(b) Daia calculated using detailed mechanism of Table 1 to
generate tume-dependent ordinary differential equations. i

ic) Read tabuiated data in scientific notavion as: [.00(=0{) = !
1.00 x 107",
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H;:0,:N,/2:1:4 at initial temperatures from 900 to 2000 °K.
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APPENDIX B

, COMPUTER LISTINGS OF PROGRAMS
i CONVRT AND POLYFIT
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